标签为 #大模型# 的博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

A21 Labs宣布开源520亿参数的全新混合专家大模型(Mixture of Experts,MoE)Jamba:单个GPU的上下文长度是Mixtral 8x7B的三倍

A21实验室是一家以色列的大模型研究机构,专门从事自然语言处理相关的研究。就在今天,A21实验室开源了一个全新的基于混合专家的的大语言模型Jamba,这个MoE模型可以在单个GPU上支持最高140K上下文的输入,非常具有吸引力。

阅读 470

开源领域大语言模型再上台阶:Databricks开源1320亿参数规模的混合专家大语言模型DBRX-16×12B,评测表现超过Mixtral-8×7B-MoE,免费商用授权!

基于混合专家技术的大语言模型是当前大语言模型的一个重要方向。去年MistralAI开源了全球最有影响力的Mixtal-8×7B-MoE模型,吸引了很多关注。在2024年3月27日的今天,Databricks宣布开源一个全新的1320亿参数的混合专家大语言模型DBRX。

阅读 1091

GGUF格式的大模型文件是什么意思?gguf是什么格式?如何使用?为什么有GGUF格式的大模型文件?GGUF大模型文件与GGML的差异是啥?

在大模型领域,GGUF是一个非常常见的词语,也是非常常见的大模型预训练结果命名方式。很多人都有疑问gguf是什么格式?很多模型模型,如Yi-34B、Llama2-70B等模型都有对应的GGUF版本,这些版本都模型除了文件名多了GGUF外,其它与原有的模型名称完全一致。那么,GGUF大模型文件格式是什么意思?为什么会有这样的大模型文件,与它一同出现对比的是GGML格式文件,二者的区别是啥?

阅读 25220

HuggingFace官方宣布将对GGUF格式的大模型文件增加更多的支持,未来可以直接在HF上查看GGUF文件的元数据信息!

当前的大模型的参数规模较大,数以千亿的参数导致了它们的预训练结果文件都在几十GB甚至是几百GB,这不仅导致其使用成本很高,在不同平台进行交换也非常困难。因此,大模型预训练结果文件的保存格式对于模型的使用和生态的发展来说极其重要。昨天HuggingFace官方宣布将推动GGUF格式的大模型文件在HuggingFace上的使用。

阅读 1806

全球首个AI软件工程师问世:可以自己训练微调大模型的AI软件工程师Devin简介

大多数编程领域的大模型应用都是单行代码补全或者单个函数生成的方式。完整的程序生成依然面临较大的挑战。而现在,一个初创企业直接发布了一个AI软件工程师,可以直接作为一个程序员来接受用户需求和反馈,独立完成编码和应用上线功能。这就是Cognition发布的全球首个AI软件工程师Devin。

阅读 1668

OpenAI开源大模型调测工具Transformer Debugger(TDB):可以在训练大模型之前理解模型的运行情况并干预

自从OpenAI转向盈利化运营之后,很少再开源自己的技术。但就在刚才,OpenAI开源了一个全新的大模型调测工具:Transformer Debugger。这个工具可以帮助开发者调测大模型的推理情况,帮助我们理解模型的输出并提供一定的解释支持。

阅读 366

开源多模态大模型新选择:DeepSeekAI(深度求索科技)开源全新多模态大模型DeepSeek-VL模型,包含可在手机端运行的13亿规模tiny多模态模型。

深度求索是著名量化机构幻方量化旗下的一家大模型初创企业,成立与2023年7月份。他们开源了很多大模型,其中编程大模型DeepSeek-Coder系列获得了非常多的好评。而在今天,DeepSeek-AI再次开源了全新的多模态大模型DeepSeek-VL系列,包含70亿和13亿两种不同规模的4个版本的模型。

阅读 1450

评测结果超过GPT-4,Anthropic发布第三代大语言模型Claude3,具有多模态能力,实际评测表现优秀!

Anthropic被认为是最像OpenAI的一家公司。他们推出的Claude2模型是全球首个支持200K超长上下文的商业模型。在PDF理解方面被认为表现优秀。就在2023年3月4日,Anthropic推出了他们的第三代大语言模型Claude3,包含3个不同的版本,支持多模态和最高100万上下文输入!

阅读 663

StarCoder2发布,开源编程大模型又一个强大选择!

在近年来,随着人工智能技术的飞速发展,大型语言模型(LLM)在代码生成和编辑领域的应用越来越广泛,成为软件开发中不可或缺的助手。今天,我想向大家介绍一个由BigCode项目与Software Heritage合作开发的下一代代码大型语言模型——StarCoder 2。

阅读 670

重磅!谷歌开源Gemini同源技术大模型Gemma,分别为70亿参数和20亿参数,同等规模参数评测极其优秀!

Google Gemini是谷歌最新推出的和OpenAI竞争的大语言模型。尽管Gemini褒贬不一,但是Gemini模型的影响力是巨大的。而现在更加令人激动的是谷歌开源了2个新的不同参数规模的模型,分别是Gemma 7B和Gemma 2B,其技术与Gemini模型一致。但是这两个开源模型完全公开,可以商用授权。

阅读 2390

截止目前可能是全球最快的大语言模型推理服务:实机演示Groq公司每秒500个tokens输出的450亿参数的Mixtral 8×7B模型

大模型的推理速度是当前制约大模型应用的一个非常重要的问题。在很多的应用场景中(如复杂的接口调用、很多信息处理)的场景,更快的大模型响应速度通常意味着更好的体验。但是,在实际中我们可用的场景下,大多数大语言模型的推理速度都非常有限。慢的有每秒30个tokens,快的一般也不会超过每秒100个tokens。而最近,美国加州一家企业Groq推出了他们的大模型服务,可以达到每秒接近500个tokens的响应速度,非常震撼。

阅读 1339

通俗易懂地解释OpenAI Sora视频生成的特点有哪些?Sora与此前的Stable Video Diffusion、Runway Gen2、Pika等有什么区别?OpenAI Sora的缺点是什么?

OpenAI的Sora模型是最近两天最火热的模型。它生成的视频无论是清晰度、连贯性和时间上都有非常好的结果。在Sora之前,业界已经有了很多视频生成工具和平台。但为什么Sora可以引起如此大的关注?Sora生成的视频与此前其它平台生成的视频到底有哪些区别?有很多童鞋似乎对这些问题依然有疑问,本文将以通俗的语言解释Sora的独特之处。

阅读 1200

重磅!第二代通义千问大模型开源,阿里巴巴一口气开源了30个不同参数规模的模型,其中Qwen1.5-72B仅次于GPT-4.

今天阿里巴巴开源了他们家第二代的Qwen系列大语言模型(准确说是1.5代),从官方给出的测评结果看,Qwen1.5系列大模型相比较第一代有非常明显的进步,其中720亿参数规模版本的Qwen1.5-72B-Chat在各项评测结果中都非常接近GPT-4的模型,在MT-Bench的得分中甚至超过了此前最为神秘但最接近GPT-4水平的Mistral-Medium模型。

阅读 4224

MetaAI官宣开源编程大模型CodeLLaMA!基于LLaMA2微调!超越OpenAI的Codex,最高支持10万tokens输入!

MetaAI发布的LLaMA系列开源大语言模型已经是开源大模型领域最重要的力量了。相当多的所谓开源大模型都是基于这个模型微调得到。在上个月,LLaMA2发布,吸引了全球非常多的关注,也有相当多的后续模型基于LLaMA2进行优化。而今天MetaAI再次开源全新的编程大模型——CodeLLaMA系列,这是MetaAI第一次发布编程大模型,本次发布的CodeLLaMA共有9个版本,分别是CodeLLaMA系列、针对Python优化的CodeLLaMA-Python系列和针对指令优化的CodeLLaMA-Inst

阅读 4333

大模型领域的GGML是什么?GGML格式的大模型文件与原有文件有什么不同?它是谁提出的?如何使用?

GGML是在大模型领域常见的一种文件格式。HuggingFace上著名的开发者Tom Jobbins经常发布带有GGML名称字样的大模型。通常是模型名+GGML后缀,那么这个名字的模型是什么?GGML格式的文件名的大模型是什么样的大模型格式?如何使用?本文将简单介绍。

阅读 3539

Google前AI研究人员认为2024年可能不会出现能与GPT-4竞争的开源模型/产品

OpenAI在2023年3月份发布了GPT-4,10个月过去了,目前也没有任何一家产品或者模型可以打败GPT-4。但是,很多人都对2024年抱有非常好的期待,认为2024年会出现能与GPT-4竞争的大模型。包括MistralAI的CEO也说他们会在2024年发布性能媲美GPT-4的大模型。但是,Google前AI研究人员,GalileoAI的联合创始人认为2024年也不会出现这种情况。

阅读 498

2023年度巨献,一图总结2023年最重要的AI相关的产品和技术~共48个产品或技术上榜

2022年11月底,ChatGPT横空出世,全球都被这样一个“好像”有智能的产品吸引力。随后,工业界、科研机构开始疯狂投入大模型。在2023年,这个被称为大模型元年的年份,有很多令人瞩目的AI产品与模型发布。2023年,DataLearner收集了大量的大模型,并发布了很多大模型相关的技术博客,在即将结束的2023年,我们以这个『2023年最令人瞩目的AI产品』结束本年的技术分享。

阅读 770

6种大模型的使用方式总结,使用领域数据集持续做无监督预训练可能是一个好选择

Sebastian Raschka是LightningAI的首席科学家,也是前威斯康星大学麦迪逊分校的统计学助理教授。他在大模型领域有非常深的简介,也贡献了许多有价值的内容。在最新的一期统计中,他总结了6种大模型的使用方法,引起了广泛的讨论。其中,关于使用领域数据集做无监督预训练是目前讨论较少,但十分重要的一个方向。

阅读 1343

不同参数规模大语言模型在不同微调方法下所需要的显存总结

大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任务,识别特定的指令等。但是大模型的微调需要的显存较高,而且比较难以估计。与推理不同,微调过程微调方法的选择以及输入序列的长度、批次大小都会影响微调显存的需求。本文根据LLaMA Factory的数据总结一下大模型微调的显存要求。

阅读 2824

OpenAI的GPT模型API接口新增的top_logprobs和logprobs参数是什么?有什么用处?为什么说这个参数可以帮助我们减轻大模型幻觉问题

在最新的OpenAI官方接口文档中,新增了top_logprobs和logprobs这2个参数。这2个参数是一起配合使用的。后者是一个布尔类型,表明模型的返回结果中是否增加输出每个token的概率,而top_logprobs参数是一个整数类型,取值范围是0-5之间。如果top_logprobs设置为true,那么模型会根据top_logprobs的设置结果,返回输出结果中每个token及其后续的n个单词的概率。

阅读 1353