推荐一个给新手的可视化的机器学习模型训练网站
使用AI技术预测未来、对数据进行分类可以解决很多个人或者小企业的问题。然而,对于新手和非行业的小企业来说,学习或者雇佣一个专业人才解决这些问题似乎有些得不偿失。这里给大家推荐一个给新手的可视化的机器学习模型训练网站,可以让大家都能享受到AI技术带来的红利。
聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。
使用AI技术预测未来、对数据进行分类可以解决很多个人或者小企业的问题。然而,对于新手和非行业的小企业来说,学习或者雇佣一个专业人才解决这些问题似乎有些得不偿失。这里给大家推荐一个给新手的可视化的机器学习模型训练网站,可以让大家都能享受到AI技术带来的红利。
Bloomberg在2022年4月开源了Memray,这是一个Python的内存分析器。它可以跟踪Python代码、本地扩展模块和Python解释器本身的内存分配情况。可以看numpy和pandas的运行内存使用。
CS 230 ― Deep Learning是斯坦福大学视觉实验室(Stanford Vision Lab)的Shervine Amidi老师开设的深度学习课程,他在课程网站上挂了一个关于深度学习示意图的网站,这里面包含了各种深度学习相关概念的示意图和动图,十分简单明了。
很多童鞋在查询期刊的时候会发现某些期刊不是SCI(SCIE)索引,而是一个叫ESCI的索引。这似乎有点像SCI,但好像又有区别,所以大家会有疑问,本篇博客将解释二者的区别。
2020年1月13日,Clarivate官网发布声明称SCI索引将被去除。未来全部使用SCIE代替期刊索引。
平时很多时候需要用到SQL,一些常见常用的SQL语句总结,后面可以拷贝使用
Alan D Thompson博士总结的,截至2022年4月份全球大语言模型一览图。
正则化是一种基本技术,通过限制模型的复杂性来防止过度拟合并提高泛化性能。目前的深度网络严重依赖正则化器,如数据增强(DA)或权重衰减,并采用结构风险最小化,即交叉验证,以选择最佳的正则化超参数。然而,正则化和数据增强对模型的影响也不一定总是好的。来自Meta AI研究人员最新的论文发现,正则化是否有效与类别高度相关。
《Python Notes For Professionals》是StackOverflow上的人总结的Python使用方法。
今晚已经是本周的最后一天了,最近的一些深度学习算法方面的进展做个总结吧,感觉都是挺不错的,供大家参考。
Jupyter Notebook虽然在教学等领域有着非常大的优势,但是实际编程中,它的效率、可维护性等方面与python脚本相比的差距到底在哪也一直不那么清晰。就在上个月底,JetBrains的研究人员使用了大量的数据详细对比了二者的差异。这里总结一下其主要结论。
Python是目前最流行的编程语言,也是开放生态做得最好的编程语言之一。大多数深度学习框架、机器学习的框架都有很优秀的Python版本。这篇博客主要为大家介绍5个python生态系中解决NLP任务的框架。
今天,时隔一年后,OpenAI发布了第二代的DALL·E模型。相比较第一代的模型,DALL·E 2,以4倍的分辨率生成更真实和准确的图像。
今天,Google介绍了一个新的语言模型,一个Pathways语言模型:PaLM,这是一个用Pathways系统训练的5400亿个参数、仅有dense decoder的Transformer模型,在数百个语言理解和生成任务上对PaLM进行了评估,发现它在大多数任务中实现了最先进的性能,在许多情况下都有显著的优势。
3月29日,DeepMind发表了一篇论文,"Training Compute-Optimal Large Language Models",表明基本上每个人--OpenAI、DeepMind、微软等--都在用极不理想的计算方式训练大型语言模型。论文认为这些模型对计算的使用一直处于非常不理想的状态。并提出了新的模型缩放规律。
昨天,Copilot团队推出了一个名为GitHub Copilot Labs的VS Code配套扩展。它独立于(并依赖于)GitHub Copilot扩展。它可以用来解释代码和翻译代码。
不久前,Java18发布,至此这款编程语言已经走过三十多年。随着近几年深度学习的发展,python已经开始霸榜编程语言,Java的流行度似乎下降很多。那么,如今的Java到底是什么状态,未来它的方向在哪?近期,JRebel对中大型企业技术人员的访谈,给我们一些指引和回答。
异质表格数据是最常用的数据形式,对于众多关键和计算要求高的应用来说是必不可少的。在同质数据集上,深度神经网络已多次显示出优异的性能,因此被广泛采用。然而,它们在表格数据建模(推理或生成)方面的应用仍然具有高度挑战性。
重磅新论文!北京人工智能研究员与清华大学、腾讯、华为、字节等公司一起发表了一篇关于大规模预训练模型路线图的论文。
Firebolt开发了一个数据工程师的网页小游戏,带你体验数据分析的全流程。游戏里你扮演一个数据工程师,从数据收集开始,经历数据pipeline、数据入数据湖以及数据分析等,最终形成各种图表的结果。
FT1000是金融时报评选的欧洲增长速度最快的前1000个公司,这个名单可以看出来过去几年欧洲哪些企业增长较快,它们在哪些行业经营等。2022年的榜单也刚刚发布,让我们一睹为快。