人工智能与大模型最新资讯与技术博客

聚焦人工智能、大模型与深度学习的精选内容,涵盖技术解析、行业洞察和实践经验,帮助你快速掌握值得关注的AI资讯。

最新博客

能否用85000美元从头开始训练一个打败ChatGPT的模型,并在浏览器中运行?

尽管当前ChatGPT和GPT-4非常火热,但是高昂的训练成本和部署成本其实导致大部分个人、学术工作者以及中小企业难以去开发自己的模型。使得使用OpenAI的官方服务几乎成为了一种无可替代的选择。本文介绍的是一种低成本开发高效ChatGPT的思路,我认为它适合一些科研机构去做,也适合中小企业创新的方式。这里提到的思路涉及了一些最近发表的成果和业界的一些实践产出,大家可以参考!

阅读 1423

“GPT”的模型太多无法选择?让大模型帮你选择大模型!浙江大学发布HuggingGPT!

随着ChatGPT的火爆以及MetaAI开源了LLaMA,各家公司好像一夜之间都有了各种ChatGPT模型的研发实力。而针对不同任务和应用构建的LLM更是层出不穷。那么,如何选择合适的模型完成特定的任务,甚至是使用多个模型完成一个复杂的任务似乎仍然很困难。为此,浙江大学与微软亚洲研究院联合发布了一个大模型写作系统HuggingGPT,可以根据输入的任务帮我们选择合适的大模型解决!

阅读 2948

彭博社发布金融领域的ChatGPT模型——BloombergGPT

彭博社今天发布了一份研究论文,详细介绍了BloombergGPT的开发,这是一个新的大规模生成式人工智能(AI)模型。这个大型语言模型(LLM)经过专门的金融数据训练,支持金融业内的多种自然语言处理(NLP)任务。

阅读 945

斯坦福大学发布2023年人工智能指数报告——The AI Index 2023

The AI Index报告是斯坦福大学发布的人工智能发展研究报告。最早的报告开始于2017年,每年一个版本,主要是总结过去一年人工智能的发展情况。2023年斯坦福The AI Index已经在近日发布。相比较之前的报告,今年的报告新增对Foundation模型的分析。让我们看看斯坦福大学如何总结2022年人工智能领域的发展情况。

阅读 1668

HuggingFace过去七天最流行的AI模型一览——预训练大模型绝对王者

HuggingFace是目前最火热的AI社区(HuggingFace简介:https://www.datalearner.com/blog/1051636550099750 ),很多人称之为AI模型的GitHub。包括Google、微软等很多知名企业都在上面发布模型。而HuggingFace上提供的流行的模型也是大家应当关注的内容。本文简单介绍一下2023年4月初的七天(当然包括3月底几天)的最流行的9个模型(为什么9个,因为我发现第10个是一个数据集!服了!)。让大家看看地球人都在关注和使用什么模型。

阅读 3947

强大的对象分割开源算法!Meta AI开源Segment Anything: Working(SAM)预训练大模型!

SAM全称是Segment Anything Model,由MetaAI最新发布的一个图像分割领域的预训练模型。该模型十分强大,并且有类似GPT那种基于Prompt的工作能力,在图像分割任务上展示了强大的能力!此外,该模型从数据集到训练代码和预训练结果完全开源!真Open的AI!

阅读 1850

预训练大语言模型的三种微调技术总结:fine-tuning、parameter-efficient fine-tuning和prompt-tuning

预训练大模型,尤其是大语言模型已经是当前最火热的AI技术。2018年Google发布BERT模型之后,fine-tuning技术也随之流行,即将预训练模型的权重冻结,然后根据具体任务进行微调变得十分有效且被应用在很多场景。而随着ChatGPT的火热,parameter-efficient fine-tuning和prompt-tuning技术似乎也有替代传统fine-tuning的趋势,本篇论文将简单描述预训练模型领域这三种微调技术及其差别。

阅读 13161

一张图总结OpenAI看好的未来AI应用——OpenAI Startup Fund支持的创业企业简介

OpenAI Startup Fund是OpenAI和微软等合作伙伴在2022年推出的一个创业基金,收到OpenAI Startup Fund投资的初创企业几乎可以等同于OpenAI认为的未来AI应用重要方向。这些企业不仅可以获得资金支持,还可以比其它企业更早使用OpenAI的模型。本文将简要介绍当前OpenAI已经投资的企业,它们可能是未来AI领域重要的角色!

阅读 1092

预训练大模型时代必备技能——Prompt Tuning简介

通过调整提示文本,可以使语言模型更好地理解任务的要求和上下文,从而提高其在特定任务上的表现。Prompt tuning是使大型语言模型更加智能和高效的关键步骤之一。只有通过精心设计和优化提示文本,我们才能充分发挥大型语言模型的潜力,并使其更好地服务于人类的需求。因此,Prompt engineering,这一种新的工程能力也开始变得重要。

阅读 7313

微软发布大语言模型与传统编程语言的集成编程框架——Python版本的Semantic Kernel今日发布

目前的LLM有很多限制,有很多问题并不能很好的解决,例如文本输入长度有限、无法记住很早之前的信息等。而这些问题目前也都缺少合适的解决方案。它们所依赖的技术:如任务规划、提示模板、向量化内存等需要的是编程的智慧。Semantic Kernel就是微软在这个背景下推出的一个结合LLM与传统编程技术的编程框架。

阅读 1533

如何训练你自己的大语言模型?——来自Replit一线工程师的亲身经验

本文是Replit工程师发表的训练自己的大语言模型的过程的经验和步骤总结。Replit是一家IDE提供商,它们训练LLM的主要目的是解决编程过程的问题。Replit在训练自己的大语言模型时候使用了Databricks、Hugging Face和MosaicML等提供的技术栈。这篇文章提供的都是一线的实际经验,适合ML/AI架构师以及算法工程师学习。

阅读 2383

500+个优质的ChatGPT的Prompts(模板)

随着ChatGPT的火爆,Prompts概念开始被大家所熟知。早期类似如BERT模型的微调都是通过有监督学习的方式进行。但是随着模型越来越大,冻结大部分参数,根据下游任务做微调对模型的影响越来越小。大家开始发现,让下游任务适应预训练模型的训练结果有更好的性能。而ChatGPT的火爆让大家知道,虽然ChatGPT的能力很强,但是需要很好的提问方式才能让它为你所服务。

阅读 4122